KU LEUVEN

The role of forecasting electricity demand in societal decarbonization

Hussain Kazmi, PhD

Overview

- Who makes electricity demand forecasts and why?
- When (and at which aggregation levels) are the forecasts made?
- How to make electricity demand forecasts?
 - Inputs, outputs and function approximation
 - Model evaluations
 - Some lessons from recent competitions

Why make forecasts?

Generation side

The electricity grid

Demand side

The energy transition

BB-

Author: Hussain Kazmi, PhD

Forecasting grid load

Image source: Elia

Author: Hussain Kazmi, PhD

KU LEUVEN

Forecasting grid load

Image source: Elia

Forecasting energy load

Adapted from Elia Report 2021

1. Error metric values

- a. Mean absolute error (MAE)
- b. Mean absolute percentage error (MAPE)
- c. Relative metrics (relative MAE (rMAE), Mean absolute scaled error (MASE))
- d. Other measures (R² score, AIC / BIC, etc.)

- 2. Forecast error distribution
- a. Normally distributed residuals
- b. Bias-variance trade-off
- c. No autocorrelation

3. Generalization

- a. Training, validation and test error
- b. Comparison with simple baselines

4. Scalability and computational complexity

- a. Has low training / inference times depending on context
- b. Scales well with increasing amount of data and/or features

5. Uncertainty estimates?

Author: Hussain Kazmi, PhD

Defining a persistence baseline model

Defining an auto-ml baseline model

KU LEUV

Author: Hussain Kazmi, PhD

How to build a forecast model

Author: Hussain Kazmi, PhD

Mapping inputs to outputs

1. Input features for a forecast model

a. Feature selection

Mapping inputs to outputs

1. Input features for a forecast model

b. Sliding and expanding windows

Input features for a forecast model
 Feature transformations

- 2. Choice of outputs
- a. Point and interval forecasts
- b. Recursive, direct & multi-step forecasts

Building a forecast model Mapping inputs to outputs Input features Input data A Model (function approximator) Unput data C

- 3. Mapping inputs to outputs
- a. Choice of function approximator

Model type	Number of models
Recursive, global model (no ensembling)	1 x 1 x 1 = 1
Recursive, local model (no ensembling)	4 x 1 x 1 = 4
Direct, global model (no ensembling)	1 x 6 x 1 = 6
Recursive, global, ensemble model	1 x 1 x 10 = 10
Direct, local model (no ensembling)	4 x 6 x 1 = 24
Recursive, local, ensemble model	4 x 1 x 10 = 40
Direct, global, ensemble model	1 x 6 x 10 = 60
Direct, local, ensemble model	4 x 6 x 10 = 240

3. Mapping inputs to outputs

Image adapted from: Deepai

b. Generalization via regularization

Author: Hussain Kazmi, PhD

Model comparisons

Data splits

From splitting data to cross-validation

Image source: Scikit-learn

Cross-validation in time series

Some lessons from recent competitions

The Great energy predictor III challenge

Preprocessing and data transformations are a critical step
Gradient boosted models are extremely effective, while out-of-the-box deep learning models tend to underperform

The post-Covid-19 electricity forecasting challenge

IEEEDataPort[™]

Ensembles increase forecasting accuracy(although they increase complexity)
Modelling holidays (and special events) well is extremely important
More generally, understanding concept or data drift is critical

The post-Covid-19 electricity forecasting challenge

Onwards to the demo

