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Overview

• Who makes electricity demand forecasts and why?
• When (and at which aggregation levels) are the forecasts made?
• How to make electricity demand forecasts?

• Inputs, outputs and function approximation
• Model evaluations
• Some lessons from recent competitions
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Why make forecasts?

Generation side Demand side

The electricity grid
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The energy transition
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Where to forecast
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Time resolution 
of datasets
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Forecasting grid load

Image source: Elia
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Forecasting 
grid load

Image source: Elia
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Forecasting energy load

Adapted from Elia Report 2021
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a. Mean absolute error (MAE)
b. Mean absolute percentage error (MAPE)
c. Relative metrics (relative MAE (rMAE), Mean absolute scaled error (MASE))
d. Other measures (R2 score, AIC / BIC, etc.)

What makes a 
good forecast?

1.   Error metric values
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a. Normally distributed residuals
b. Bias-variance trade-off 
c. No autocorrelation

a. Normally distributed residuals
b. Bias-variance trade-off 
c. No autocorrelation

2.  Forecast error distribution

What makes a good forecast?

a. Normally distributed residuals
b. Bias-variance trade-off 
c. No autocorrelation
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3.  Generalization
a. Training, validation and test error
b. Comparison with simple baselines

What makes a good forecast?
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4. Scalability and 
computational complexity

What makes a good forecast? Scaling with…

… number of time 
series to predict

… prediction 
horizon

… input training 
features

… input training 
examples

a.   Has low training / 
inference times 
depending on context 

b.   Scales well with 
increasing amount 
of data and/or 
features
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What makes a 
good forecast?

5. Uncertainty 
estimates?

De
m
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d

Time
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Establishing 
a baseline
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Defining a 
persistence 
baseline 
model
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Defining an auto-ml baseline model
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How to build a 
forecast model
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Building a 
forecast model Mapping inputs to outputs

Model 
(function 

approximator)

Input features Choice of outputs

Output X

Output Y

Output Z

Input data A

Input data B

Input data C
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1. Input features 
for a forecast 
model

a. Feature 
selection

Mapping inputs to outputs

Model 
(function 

approximator)

Input features Choice of outputs

Output X

Output Y

Output Z

Input data A

Input data B

Input data C
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Building a forecast model 1. Input features for a forecast model
b. Sliding and expanding windows

Sliding Window Expanding Window

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Time Present Time Present

Available Historical Time SeriesAvailable Historical Time Series

Dropped Training Forecasting Training Forecasting

Image adapted from Uber
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1.    Input features for a forecast model
c.    Feature transformations

Building a 
forecast model
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Building a forecast model
2.   Choice of outputs
a.   Point and interval forecasts
b.   Recursive, direct & multi-step forecasts

3-step2-step1-step

1-step

2-step

3-step

t-3 t-2 t-1 t t+1 t+2 t+3 t-3 t-2 t-1 t t+1 t+2 t+3

(a) Recursive MS (b) Direct MS

Image adapted from: IEEE
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Building a forecast model
3.    Mapping inputs to outputs
a.    Choice of function approximator
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Building a forecast model 3.   Mapping inputs to outputs
b.   Generalization via regularization

Optimal capacity Capacity

Bias

Variance

Overfitting zoneUnderfitting zone

Generalization
error

Image adapted
from: Deepai
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Model 
comparisons
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Data splits

Single Dataset

Single Dataset

A

B
Training Validation Test

Training Test
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From splitting data 
to cross-validation

Image source: Scikit-learn
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Cross-validation in time series

Data

Train

Train

Train

Train

Test

Test

Test

Test
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Some lessons from 
recent competitions
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The Great energy predictor III challenge 

• Preprocessing and data transformations are a critical step 
• Gradient boosted models are extremely effective, while out-of-the-box deep 

learning models tend to underperform 
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The post-Covid-19 electricity forecasting challenge

• Ensembles increase forecasting accuracy(although they increase complexity)
• Modelling holidays (and special events) well is extremely important
• More generally, understanding concept or data drift is critical
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The post-Covid-19 electricity forecasting challenge
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Onwards to the demo


