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Overview

* Who makes electricity demand forecasts and why?
 When (and at which aggregation levels) are the forecasts made?

* How to make electricity demand forecasts?
* Inputs, outputs and function approximation
* Model evaluations
* Some lessons from recent competitions
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Why make forecasts?

4\, ﬂ '

Demand side

Generation side Bk

The electricity grid
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Where to forecast
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Forecasting grid load

Total load

12 000

11000

Image source: Elia

8.Jul 9.Ju 12, Jul

Time horizon

—— Measured & Upscaled — Most recent forecast —— Day-ahead forecast

— Week-ahéad‘ férecast'
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Forecasting
grid load

Image source: Elia
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Forecasting energy load
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*the 2020 value is an estimation
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Mean absolute error (MAE)

Mean absolute percentage error (MAPE)
Relative metrics (relative MAE (rMAE), Mean absolute scaled error (MASE))

Other measures (R?score, AIC / BIC, etc.)

a.
b.
C.
d.
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What makes a good forecast?
2. Forecast error distribution

a. Normally distributed residuals
Bias-variance trade-off
c. No autocorrelation

1.0

0.8
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What makes a good forecast?

3. Generalization

a. Training, validation and test error

b. Comparison with simple baselines

AValues AValues ’ AValues
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Underfitted Good Fit/Robust Overfitted
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What makes a good forecast? o
Scaling with...

4. Scalability and ..input training ] ... input training
, , examples g features
computational complexity

a. Has low training /
inference times
depending on context

b. Scales well with
increasing amount

of data and/or

features ... number of time
series to predict

" ... prediction
horizon

-~ -
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What makes a
good forecast?

5. Uncertainty
estimates?
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Establishing
a baseline
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T ' Defining a
persistence
baseline

model
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Defining an auto-ml baseline model

Darts @ {37 SKTIME ~\CARET




forecast model
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Building a

Mapping inputs to outputs

forecast model
/\ M

Input features Choice of outputs

Input data A -
Input data B »
Input data C -

Model
(function

approximator)
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1- |an|t features Mapping inputs to outputs

for a forecast
model < N ﬁ/\/\

Input features

Input data A -
Input data B -
Input data C -

a. Feature
selection

Model
(function

approximator)
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Building ) forecast model 1. Input features for a forecast model

b. Sliding and expanding windows

Sliding Window Expanding Window
Time Present Time Present
Pass1 D Pass 1 S

Pass 2 B I -

Pass 3 I . B |
Pass 4 B B

Pass 5 I S _____________________________J
J L J

Available Historical Time Series Available Historical Time Series

Dropped I Training [ Forecasting I Training [ Forecasting

Image adapted from Uber
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BUiIding d 1. Input features for a forecast model
forecast model c. Feature transformations
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Building a forecast model

Mapping inputs to outputs

Building a forecast model s

2. Choice of outputs -
(function

approximator)

a. Point and interval forecasts
b. Recursive, direct & multi-step forecasts

(a) Recursive MS (b) Direct MS

ECHNCINGINGN © )\ vaer 00 o0 0o o
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1—§tep 2-step

[
>

t-2 t-1 ot t-3 t-2 t-1 t t+1 t+2 t+3

t-3
Image adapted from: IEEE
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Building a forecast model

Mapping inputs to outputs

Building a forecast model —

Input features Choice of outputs
Output X

cxm -
Model & o
approximator)
e B

3. Mapping inputs to outputs

Output Z

a. Choice of function approximator

Model type Number of models

Recursive, global model (no ensembling) 1x1x1=1

Recursive, local model (no ensembling) 4x1x1=4

Direct, global model (no ensembling) 1x6x1=6

x HENBEEN x

Recursive, global, ensemble model 1x1x10=10

Direct, local model (no ensemblin 4x6x1=24
o ( g)

Time series Time horizon Ensemble models Recursive, local, ensemble model 4x1x10=40

Direct, global, ensemble model 1x6x10=60

Direct, local, ensemble model 4x6x10=240
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Building a forecast model 3. Mapping inputs to outputs

b. Generalization via regularization

Underfitting zone |  Overfitting zone

Generalization
error

N
>

Optimal capacity Capacity

Image adapted
from: Deepai
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i, PhD
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Data splits

Training Test
A e .
L )

Single Dataset

Training Validation Test

B e

J

Single Dataset
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From splitting data
to cross-validation

Image source: Scikit-learn
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Split 1
Split 2
Split 3
Split 4

Split5

All Data

Training data

Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Final evaluation {

/

> Finding Parameters

Test data




Cross-validation in time series
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The Great energy predictor lll challenge

Edds lab @) BULDING DATA

building and urban data science Genome Project

* Preprocessing and data transformations are a critical step
 Gradient boosted models are extremely effective, while out-of-the-box deep
learning models tend to underperform
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The post-Covid-19 electricity forecasting challenge

*YBuWave  |EEEDataPort

 Ensembles increase forecasting accuracy(although they increase complexity)
« Modelling holidays (and special events) well is extremely important
* More generally, understanding concept or data drift is critical
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Load at 3PM (MW)

1000 1100 1200 1300 1400 1500 1600

900

The post-

Working days
Weekends
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ovid-19 electricity forecasting challenge

Load at 3PM (MW)

1000 1100 1200 1300 1400 1500 1600

900

Working days
Weekends

Exponential smoothing of the temperature (°C)

Load at 3PM (MW)

900 1000 1100 1200 1300 1400 1500 1600

* Monday
* Tuesday

Wednesday
Thursday
Friday
Saturday
Sunday

900

1000

Load at 3PM (MW)

900 1000 1100 1200 1300 1400 1500 1600

Working days
Weekends
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